Fully Time-domain Scanning of EM Near-Field Radiated by RF Circuits
نویسندگان
چکیده
Abstract—This paper deals with planar scanning technique of electromagnetic (EM) near-field (NF) emitted by electronic printed circuit boards (PCBs) fully in the time-domain (TD). The proposed EM scanning metrology is essentially based on the NF test bench available at the IRSEEM laboratory. It comprises motorized mechanical structures for moving the probe interconnected to electronic measurement instruments and controlled by a driver PC. The synoptic of the test bench is presented and technically examined. The characteristics of different elements constituting the measurement chain of the TD test bench understudy are described. The NF metrology developed is originally focused on the measurement of time-dependent magnetic field H(t) dedicated to the radiated emission electromagnetic compatibility (EMC) applications. An innovative calibration technique of the loop probe for detecting H(t) is established in order to ensure the post processing and extraction of the measured NF data. Then, validations were carried out via comparison with different simulations run with standard commercial tools. Mathematical analyses were also conducted for the improvement of the measurement post processing. To realize the mapping of time-dependent EM field components, a software interface edited with the graphical language LabVIEW was emulated to synchronize the probe displacement and the data acquisition. An UWB amplifier with average gain about 30 dB from DC to 300 MHz was designed and fabricated in order to decrease the measurement noise and to improve the quality of measured signals. As results of the study, TD NF mapping is demonstrated successfully by measuring the EM radiation emitted by electronic planar circuits. The technique developed is extremely useful in the field of EMC engineering for predicting the transient perturbations susceptible to degrade electronic functions in complex systems encountered usually for the automotive and aeronautic applications.
منابع مشابه
A Study of Electromagnetic Radiation from Monopole Antennas on Spherical-Lossy Earth Using the Finite-Difference Time-Domain Method
Radiation from monopole antennas on spherical-lossy earth is analyzed by the finitedifference time-domain (FDTD) method in spherical coordinates. A novel generalized perfectly matched layer (PML) has been developed for the truncation of the lossy soil. For having an accurate modeling with less memory requirements, an efficient "non-uniform" mesh generation scheme is used. Also in each time step...
متن کاملApplication of a Hybrid Model for the Susceptibility of Complex Form Metallic Wires Perturbed by Em Near-field Radiated by Electronic Structures
A modeling of the metallic wires susceptibility facing to the disturbances caused by electromagnetic (EM) near-field (NF) radiated by electronic structures in radio frequencies (RF) is introduced by using a hybrid method. This latter is based on the use of the given EM-data calculated or determined from the standard computation tools associated with basic analytical methods expressing the coupl...
متن کاملA New Generation Method of Rotating-em Field for Rf Radiated Immunity/susceptibility Test
1. Introduction Several kinds of RF (radio frequency) radiated immunity/susceptibility test methods have been proposed, and put to practical use. The test methods using transverse electromagnetic (TEM) devices such as TEM cell and GTEM cell have already been standardized. By using these methods, the immunity/susceptibility characteristics to the electromagnetic (EM) field in a fixed direction o...
متن کاملThe Study of Biological Effect of EM Radiation by Antenna at Different Position of Human Model
This paper presents an approach to modeling of field penetration and gives contribution to understanding the real effects of the fields and the sensitivity of human model to electromagnetic radiation generated by mobile antenna. When a human body is exposed to the electromagnetic radiation, because human body contain 70% of liquid, and it contain more liquid near of head, heart, abdomen (near o...
متن کاملThe Study of Biological Effect of EM Radiation by Antenna at Different Position of Human Model
This paper presents an approach to modeling of field penetration and gives contribution to understanding the real effects of the fields and the sensitivity of human model to electromagnetic radiation generated by mobile antenna. When a human body is exposed to the electromagnetic radiation, because human body contain 70% of liquid, and it contain more liquid near of head, heart, abdomen (near o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013